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Monte Carlo simulations within the grand canonical ensemble are used to explore the liquid-vapor
coexistence-curve and critical-point properties of the Lennard-Jones fluid. Attention is focused on
the joint distribution of density and energy fluctuations at coexistence. In the vicinity of the critical
point, this distribution is analyzed using mixed-field finite-size scaling techniques aided by histogram
reweighting methods. The analysis yields highly accurate estimates of the critical-point parameters
as well as exposing the size and character of corrections to scaling. In the subcritical coexistence
region the density distribution is obtained by combining multicanonical simulations with histogram
reweighting techniques. It is demonstrated that this procedure permits an efficient and accurate
mapping of the coexistence curve, even deep within the two-phase region.

PACS number(s): 61.20.—p, 64.60.Fr, 64.70.Fx, 05.70.Jk

I. INTRODUCTION

The Lennard-Jones (LJ) fluid constitutes the proto-
type model for realistic atomic fluids and has been the
focus of numerous simulation studies spanning well over
25 years [1-12]. The motivation for the long-standing
interest in the model is its utility as a test bed for new
and ever more accurate and sophisticated theories of the
liquid state. Contemporary theories [13—-15] now provide
good agreement with simulation results over a wide range
of noncritical temperatures. The continuing challenge,
however, is to realize a similar degree of accuracy in the
critical region, where the unbounded growth of correla-
tions poses potentially serious difficulties for theory and
simulation alike.

One popular simulation method for studying the co-
existence regime of fluid systems is the Gibbs ensemble
Monte Carlo (GEMC) simulation technique introduced
by Panagiotopoulos [7]. In the GEMC method, the two
coexisting phases separate into two physically detached
but thermodynamically connected boxes, the volumes of
which are allowed to fluctuate under a constant pressure
environment. Measurements of the particle density in
each box provide estimates of the coexistence densities.
Common practice is to fit the temperature dependence
of these densities using a power law, the extrapolation
of which yields estimates of the critical-point parame-
ters. The strength of the GEMC method lies in its elim-
ination of the physical interface between the coexisting
phases, the large free energy of which plagues conven-
tional grand canonical simulations of phase coexistence
in the form of long lived metastable states and extended
tunneling times. A large number of recent GEMC stud-
ies [16] testify to the method’s efficacy in determining the
subcritical coexistence properties of fluids.

In the neighborhood of the critical point, however, and
for reasons discussed in Refs. [17-20], the GEMC method
cannot be relied upon to provide accurate estimates of
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the coexistence-curve parameters. Instead it is necessary
to employ finite-size scaling (FSS) techniques to probe
the critical limit. FSS techniques were originally devel-
oped in the context of computer simulation studies of
critical phenomena in spin models, and provide a highly
effective route to infinite volume critical parameters from
simulations of finite size [21,22]. Recently their use has
been extended to fluids by explicitly incorporating the
consequences of the lack of symmetry between the coex-
isting phases [17,23-25]. This reduced symmetry of fluids
with respect to magnetic systems such as the Ising model
is manifest in the so-called “field-mixing” phenomenon
which is a crucial issue in the critical behavior of flu-
ids. The mixed-field FSS theory has been successfully
employed in conjunction with simulations in the grand
canonical ensemble to study the critical behavior of a
number of critical fluid systems [17,23-26], including the
two-dimensional (2D) LJ fluid and a three-dimensional
lattice model for polymer mixtures. In the present work
we extend these studies to the 3D LJ fluid making addi-
tional use of two important new methodological advances
in computer simulation.

The essential ideas underpinning the FSS methods we
shall use are the dual concepts of scale invariance and
universality. Precisely at criticality, the fluctuation spec-
tra (distribution functions) of certain readily accessible
observables assume scale invariant forms [27-29]. More-
over, these critical scaling functions are universal, being
identical for all members of the same universality class.
Experimental [30-32], theoretical [33,34], and simulation
[23] results show that the critical behavior of simple flu-
ids corresponds to the Ising universality class (to which
all systems with short range interactions and a scalar
order parameter belong). Scaling functions measured for
the critical Ising model therefore constitute a hallmark of
the Ising universality class, a fact that can be exploited
to obtain accurate estimates of the critical-point param-
eters of simple fluids.
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Besides the progress in extending the application of
FSS concepts to fluid systems, two recent technical ad-
vances in computer simulation methods also greatly im-
prove the efficiency with which one can tackle both the
critical and subcritical regimes of model systems. The
first is the histogram reweighting technique of Ferren-
berg and Swendsen [35]. This technique hinges on the
observation that histograms of observables accumulated
at one set of model parameters can be reweighted to yield
estimates for histograms appropriate to another set of pa-
rameters. The histogram reweighting method has been
found to be especially profitable close to the critical point
where, owing to the large critical fluctuations, a single
simulation affords reliable extrapolations over the entire
critical region.

The second technical advance came with the introduc-
tion by Berg and Neuhaus [36] of the multicanonical en-
semble, use of which permits efficient Monte Carlo stud-
ies of two-phase coexistence even far below the critical
point. The multicanonical method employs a preweight-
ing scheme to surmount the free energy barrier associ-
ated with formation of interfaces between the coexisting
phases. This barrier grows rapidly as one moves further
from the critical point, quickly rendering conventional
GCE simulations impractical. The multicanonical tech-
nique circumvents this problem by sampling, not from a
Boltzmann distribution, but from a preweighted distri-
bution that is approximately flat between the coexisting
densities. The desired Boltzmann distributed quantities
are subsequently obtained by dividing out the preweight-
ing factors from the measured histograms. Use of this
method has been shown to reduce the tunneling time to
a simple power law in the system size [37].

In the light of these new developments and the demand
for ever increasing accuracy in estimates of the phase co-
existence properties of prototype models, it seems ap-
propriate to reconsider the Lennard-Jones fluid with a
view to performing a high precision study of its critical-
point and coexistence-curve parameters. To this end we
have carried out a detailed simulation study of the model,
bringing to bear all the aforementioned methodological
advances. Our paper is organized as follows. We begin in
Sec. IT by providing a short résumé of the mixed-field FSS
theory for the density and energy fluctuations of near-
critical fluids. In Sec. III, we present measurements of the
near-critical scaling operator distributions as a function
of system size. These distributions are analyzed within
the FSS framework, to yield extremely accurate estimates
for the critical-point and field-mixing parameters. Turn-
ing then to the subcritical region we present the results
of multicanonical simulation measurements of the coex-
istence density distributions. It is demonstrated how the
measured coexistence densities can be used in conjunc-
tion with knowledge of the critical-point parameters to
construct the infinite volume coexistence curve. Finally,
in Sec. IV we detail our conclusions.

II. THEORETICAL BACKGROUND

In this section we provide a brief overview of the prin-
cipal features of the mixed-field FSS theory of Ref. [17].

The system we consider is assumed to be contained
in a volume L? (with d = 3 in the simulations to be
considered below) and thermodynamically open so that
the particle number can fluctuate. The observables on
which we shall focus are the particle number density

p=L"%N (2.1)
and the dimensionless energy density
u = L™%(4w) 1@ ({r}), (2.2)

where ®({r}) is the configurational energy of the system
which we assume takes the form

e({r}) = Y _ ¢(Irs —r3)),

2,J

(2.3)

and where we assign the potential ¢(r) the familiar
Lennard-Jones form

¢(r) = 4wl(o/r)"* — (a/r)°]

with w the well depth, and o a parameter that serves to
set the length scale.

Within the grand canonical ensemble, the joint dis-
tribution of density and energy fluctuations, pr(p, u), is
controlled by the reduced chemical potential p and the
well depth w (both in units of kgT'). The critical point is
located by critical values of the chemical potential . and
well depth w.. Deviations of w and p from their criti-
cal values control the sizes of the two relevant scaling
fields that characterize the critical behavior [38]. In the
absence of the special Ising (“particle-hole”) symmetry,
the relevant scaling fields comprise (asymptotically) lin-
ear combinations of the coupling and chemical potential
differences [39]:

(2.4)

h=l/'—'ll'c+7'(wc—w)a
(2.5)

T=we—w+ s(p— pe),

where 7 is the thermal scaling field and A is the ordering
scaling field. The parameters s and r are system-specific
quantities controlling the degree of field mixing. In par-
ticular, r is identifiable as the limiting critical gradient
of the coexistence curve in the space of u and w. The
role of s is somewhat less tangible; it controls the degree
to which the chemical potential features in the thermal
scaling field, manifest in the widely observed critical sin-
gularity of the coexistence-curve diameter of fluids [32].

Conjugate to the two relevant scaling fields are scaling
operators M and &, which comprise linear combinations
of the particle density and energy density [17]:

1
1—sr

M= [p— su], &= jr[u—rp]. (2.6)

1

The operator M (which is conjugate to the ordering field
h) is termed the ordering operator, while £ (conjugate to
the thermal field) is termed the energylike operator. In
the special case of models of the Ising symmetry (for
which s = r = 0), M is simply the magnetization while
£ is the energy density.
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The joint distribution of density and energy is simply
related to the joint distribution of mixed operators:

pr(p,u) = pr(M,E). (2.7)

1—sr
Near criticality, and in the limit of large system size,
pL(M,E) is expected to be describable by a finite-size
scaling relation of the form [17]

pL(M,E) 2 AL AL Paa,e (AL OM,AFSE, Aph, AeT),
(2.8a)
where
Ae = ag LYY Apq = apq L P/ ApAT = AgAf = L2
(2.8b)

and

IM=M— (M), 8 =& —(&)e. (2.8¢)
The subscripts ¢ in Egs. (2.8¢) signify that the averages
are to be taken at criticality. Given appropriate choices
for the nonuniversal scale factors axq and ag [Eq. (2.8b)],
the function paq,e(A},6M, AL SE, Apsh, AeT) is expected
to be universal. Precisely at criticality, Eq. (2.8a) implies
simply

pL(M, E) > AT APy e (AT OM, AESE), (2.9)
where pa,e(z,y) = Pm,e(x,9,0,0) is a function describ-
ing the universal and statistically scale invariant operator
fluctuations characteristic of the critical point.

For smaller system sizes, one anticipates that correc-
tions to scaling associated with finite values of the irrel-
evant scaling fields will become significant [38]. These
irrelevant fields take the form a;7% + a,72% + - -, where
6 is the universal correction to scaling exponent, whose
value has been estimated to be § ~ 0.54 for the 3D Ising
class [40]. Incorporating the least irrelevant of these cor-
rections into Eq. (2.9), one finally obtains

pL(M,E) = AL AF B, e (AL OM,AFSE, a  L70).
(2.10)

As we shall show, it is necessary to take account of such
correction terms if highly accurate estimates of the crit-
ical parameters are to be obtained.

III. MONTE CARLO STUDIES
A. Computational details

The Monte Carlo simulations described here were per-
formed using a Metropolis algorithm within the grand
canonical ensemble. The algorithm employed is similar
in form to that described by Adams [41,42], but differs
in the respect that only particle transfer (insertion and
deletion) steps were implemented, leaving particle moves

to be performed implicitly as a result of repeated trans-
fers. Physically this choice is motivated by the need to
direct the computational effort at the density fluctua-
tions, which are the bottleneck for phase space evolution
at coexistence.

As is common practice in simulations of systems whose
interparticle potential decays rapidly with particle sepa-
ration, the Lennard-Jones potential was truncated in or-
der to reduce the computational effort. In accordance
with most previous studies of the LJ system, the cutoff
radius was chosen to be r. = 2.50, and the potential
was left unshifted. It should be noted, however, that
the choice of cutoff can have quite marked effects on the
critical-point parameters, a point emphasised by Smit
[10].

In order to facilitate efficient computation of interpar-
ticle interactions, the periodic simulation space of vol-
ume L3 was partitioned into m3 cubic cells, each of side
r.. This strategy ensures that interactions emanating
from particles in a given cell extend at most to par-
ticles in the 26 neighboring cells. We chose to study
a range of system sizes corresponding to m = 3,4,5,6
and 7, containing at coexistence average particle num-
bers of 135,320,625,1080, and 1715, respectively. For
the m = 3,4, and 5 system sizes, equilibration periods of
105 Monte Carlo transfer attempts per cell (MCS) were
utilized, while for the m = 6 and m = 7 system sizes
up to 2 x 10® MCS were employed. Sampling frequencies
ranged from 15 MCS for the m = 3 system to 50 MCS
for the m = 7 system. The total length of the production
runs was also dependent upon the system size. For the
m = 3 system size, 1 x 107 MCS were employed, while for
the m = 7 system, runs of up to 5 x 107 MCS were neces-
sary. In the subcritical coexistence region (studied using
multicanonical simulations), runs of length 5 x 108 MCS
were utilized. In both the subcritical and critical coex-
istence regimes, the average acceptance rate for particle
transfers was approximately 25%.

In the course of the simulations, the observables
recorded were the particle number density p and the en-
ergy density u. The joint distribution pr,(p, u) was accu-
mulated in the form of a histogram. In accordance with
convention, we express p and u in reduced units,

p* = pol, u* = uo?.

(3.1)
We also note for future reference that the algorithm actu-
ally utilizes not the true chemical potential u featuring in
Eq. (2.5), but an effective chemical potential u* to which
the true chemical potential is related by

p=p*+po —In(N/L?), (3.2)
where pg is the chemical potential in the noninteracting
(ideal gas) limit. It is this effective value that features in
the results that follow.

B. The critical limit

The most recent Gibbs ensemble simulation studies of
the LJ fluid (using r. = 2.50) place the critical tempera-
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ture at T* = 4/w = 1.176(8) [43]. Using this estimate, we
attempted to locate the liquid-vapor coexistence curve by
performing a series of very short runs for the m = 4 sys-
tem size, in which the effective chemical potential u* was
tuned until the density distribution exhibited a double
peaked structure. Having obtained, in this manner, an
approximate estimate of the coexistence chemical poten-
tial, a longer run comprising 2 x 107 MCS was performed
to accumulate better statistics. Histogram reweighting
was then applied to the resulting histogram enabling ex-
ploration of the coexistence curve in the neighborhood of
the simulation temperature.

To facilitate a precise identification of the coexistence
chemical potential, we adopted the criterion that the
ordering operator distribution py(M) = [dEpr(M,E)
must be symmetric in M — (M). This criterion is the
counterpart of the coexistence symmetry condition for
the Ising model magnetization distribution. By simul-
taneously tuning g and s in the reweighting of the joint
distribution pr (p, u), estimates for the coexistence chem-
ical potential and the value of the field-mixing parameter
s that satisfy this symmetry condition were readily ob-
tained.

To obtain a preliminary estimate of the critical-point
parameters, the universal matching condition for the or-
dering operator distribution pr (M) was invoked. As ob-
served in Secs. I and II, fluid-magnet universality im-
plies that the critical fluid ordering operator distribution
pr(M) must match the universal fixed point function
Piu(z) = fﬁjw,g(m,y)dy appropriate to the Ising uni-
versality class. The latter function is identifiable as the
critical magnetization distribution of the Ising model, the
form of which is independently known from detailed sim-
ulation studies of large Ising lattices [44]. Leaving aside
for the present the question of corrections to scaling, the
apparent critical point of the fluid can thus be estimated
by tuning the temperature, chemical potential, and field-
mixing parameter s (within the reweighting scheme) such
that pr(M) collapses onto p%,(z). The result of apply-
ing this procedure for the m = 4 data set is displayed in
Fig. 1 where the data have been expressed in terms of
the scaling variable z = ay; LA/*(M — M,). The accord
shown corresponds to a choice of the apparent critical
parameters T (L) = 1.1853(2) and p}(L) = —2.7843(3).

Using these estimates of the critical parameters, exten-
sive simulations were then performed for each of the five
system sizes m = 3-7 in order to facilitate a full finite-
size scaling analysis. Reweighting was again applied to
the resulting histograms to effect the matching of py, (M)
to piy(z), thus yielding values of the apparent critical
parameters. Interestingly, however, the apparent critical
parameters determined in this manner were found to be
L-dependent. The reason for this turns out to be sig-
nificant contributions to the measured histograms from
corrections to scaling, manifest as an L dependent dis-
crepancy between the critical operator distributions and
their limiting Ising forms. In the case of the ordering
operator distribution pz, (M), the symmetry of the Ising
problem implies that the correction to scaling function is
symmetric in M — (M). In attempting to implement the
matching to $%,(x) we therefore necessarily introduce an
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FIG. 1. The measured form of the ordering operator dis-
tribution pr (M) for the m = 4 system size at the apparent
critical parameters 7, = 1.1853 and ui = —2.7843. Also
shown for comparison is the universal fixed point ordering
operator distribution pi,(z). The data have been expressed
in terms of the scaling variable z = a;}Lﬂ/"(M — M.), with
the value of the nonuniversal scale factor a,; chosen so that
the distributions have unit variance. Statistical errors do not
exceed the symbol sizes.

additional symmetric contribution to pr(M) associated
with a finite value of the scaling field 7. This latter contri-
bution has, coincidentally, a functional form that is very
similar to that of the correction to scaling function, a
result which of course make the cancellation of contribu-
tions possible. It follows, therefore, that the magnitude
of the two contributions must be approximately equal.

Notwithstanding the added complications that correc-
tions to scaling engender, it is nevertheless possible to
extract accurate estimates of the infinite volume critical
parameters from the measured histograms. The key to
accomplishing this is the known scaling behavior of the
corrections to scaling which [recall Eq. (2.10)] die away
with increasing system size like L=%/%. Now, since con-
tributions to pr (M) from finite values of T grow with
system size like |7|L'/*, it follows that implementation
of the matching condition leads to a deviation of the ap-
parent critical temperature T (L) from the true critical
temperature T* which behaves like

T*(o0) — T¥(L) o< L=6+D/7, (3.3)

In Fig. 2 we plot the apparent critical temperature
T*(L) as a function of L=+1)/¥ One observes that
the data are indeed well described by a linear depen-
dence, the least squares extrapolation of which yields
the infinite volume estimate T = 1.1876(3). The as-
sociated estimate for the critical chemical potential is
pr = —2.778(2). We note, however, that, although the
coexistence value of p* is tightly tied to T*, estimates
of u¥ are not directly affected by corrections to scaling
in pr, (M), since the function dpr(M)/éu is (to leading
order) antisymmetric in M — (M) [17].
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FIG. 2. The apparent reduced critical temperature (as de-
fined by the matching condition described in the text), plot-
ted as a function of L"(B'H)/", with 8§ = 0.54 and v = 0.629
[40,47]. The extrapolation of the least squares fit to infinite
volume yields the estimate T2 = 1.1876(3).

Having acquired accurate estimates for the infinite vol-
ume values of T} and p7, it is instructive to examine more
closely the size and character of corrections to scaling in
the operator distributions. Addressing first the ordering
operator distribution, we show in Fig. 3(a) the critical-
point form of py, SM) [expressed in terms of the scaling
variable z = aj(LP/Y(M — M,)], for the two system
sizes m = 4 and m = 7. Also shown is the universal
fixed point function p%,(z) appropriate to the 3D Ising
universality class. The corrections to scaling, manifest in
the discrepancy between the fluid finite-size data and the
limiting form, are clearly evident in the figure, especially
for the m = 4 system size. We note further that their
form is qualitatively similar to those observed in the 2D
Ising universality class [45].

A similar situation pertains to the energy operator dis-
tribution pr(€) = [dMpr(M,E). Figure 3(b) shows
the form of this function, together with the limiting fixed
point function % (y) = [ Hiy ¢ (=, y)dz, identifiable as the
critical energy distribution of the Ising model, and inde-
pendently known from detailed Ising model studies [25].
The data have all been expressed in terms of the scaling
variable y = a;'L31/¥(€ — £,). One observes that in
this case the corrections to scaling are noticeably larger
than for pr(M), a fact that presumably reflects the rel-
ative weakness of critical fluctuations in £ compared to
those in M.

Turning now to the critical-point field-mixing parame-
ters, s and r, the values of these quantities were assigned
(as described in detail in Ref. [25]) such as to optimize
the mapping of the critical operator distributions onto
their limiting fixed point forms (cf. Fig. 3). The re-
sulting estimates were, however, found to be slightly L
dependent for the smaller system sizes, an observation
that may indicate a finite-size dependence of the scaling
fields themselves [46]. For the two largest system sizes
this L dependence is, however, small and we estimate

s = —0.11(1) and r = —1.02(1).

The measured histograms also serve to furnish esti-
mates of the exponent ratios 3/v and 1/v characterizing
the two relevant scaling fields h and 7. These exponent
ratios are accessible via the finite-size scaling behavior of
pr(M) and pr(€) at the critical point. Specifically, con-
sideration of the scaling form (2.9) shows that the typical
size of the critical fluctuations in the energylike operator
will vary with system size like 6& ~ L~(4=1/%) while the
typical size of the fluctuations in the ordering operator
varies like M ~ L=B/”. Comparison of the standard
deviation of these distributions as a function of system
size thus affords estimates of the appropriate exponent
ratios. In order to minimize systematic errors resulting
from corrections to scaling, we have performed this com-
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FIG. 3. (a) The ordering operator distribution pz (M) for
the two system sizes m = 4 and m = 7 at the assigned critical
parameters T, us, expressed as a function of the scaling vari-
able z = aji LP/¥(M — M,). Also shown (solid line) is the
universal fixed point ordering operator distribution pi,(z).
(b) The energy operator distribution pr(€) for the two sys-
tem sizes m = 4 and m = 7 at T, u’, expressed as a function
of the scaling variable y = aZ'L%"Y/¥(£ — £.). Also shown
(solid line) is the universal fixed point energy operator dis-
tribution 5z (y). In both cases the values of the nonuniversal
scale factors a; ' or aj; have been chosen to yield unit vari-
ance.
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parison only for the two largest system sizes, m = 6 and
m = 7. From the measured variance of py(M) for these
two systems, we find 8/v = 0.521(5), an estimate which
compares very favorably with the three-dimensional (3D)
Ising estimate [47] of B/v = 0.518(7). Given though that
no allowances were made for corrections to scaling, the
quality of this accord is perhaps slightly fortuitous.

Carrying out an analogous procedure for pr(€) yields
the estimate 1/v = 1.67(7), which does not agree to
within error with the 3D Ising estimate 1/v = 1.5887(4).
Here, though, we believe that the bulk of the discrepancy
is traceable to the high sensitivity of pr(£) with respect
to the designation of the field-mixing parameter r im-
plicit in the definition of £ [cf. Eq. (2.6)]. In the presence
of sizable corrections to scaling, it is somewhat difficult
to gauge very accurately the infinite volume value of r
from the mapping of pr,(€) onto p%(y). Studies of signifi-
cantly larger system sizes than considered here would be
necessary to alleviate this problem.

Addressing now the critical density and energy dis-
tributions, Fig. 4 shows the measured forms of py(p)
and pr(u) at the designated critical parameters. Clearly
these distributions are to varying degrees asymmetric,
a fact which (as explained in detail in Ref. [25]) stems
from field-mixing effects. These field-mixing contribu-
tions (which are not to be confused with corrections to
scaling) die away with increasing L so that the limit-
ing forms of both pr(p) and pr(u) match the fixed point
ordering operator distribution p%,(z). The approach to
this limiting behavior is indeed quite evident in Fig. 4.
We note, however, that the limiting form of the fluid
critical energy distribution differs from that of the Ising
model where limy_,o pr(u) = p%(y). This radical al-
teration to the limiting behavior manifests the coupling
that occurs in asymmetric systems between the ordering
operator and energylike operator fluctuations, the former
of which dominate for large L [25,26]. As a consequence
one finds that for critical fluids the specific heat

C, = L3((u?) — (uw)?)/kpT? ~ L/", (3.4)
in stark contrast to the behavior in the Ising model for
which C, ~ L®/¥. To recapture the Ising behavior it is
instead necessary to consider the fluctations of the fluid
energylike operator &:

LA((E%) — (£)2) /kpT? ~ L*/*. (3.5)

As a further important consequence of field mixing, it
transpires that measurements of the density and energy
distributions at the infinite volume critical point do not
afford direct estimates of the infinite volume critical den-
sity and energy density. This was demonstrated in Ref.
[25], where it was shown that the presence of field-mixing
contributions to pr(p) and pr(u) introduces a finite-size
shift to their average values which behaves like the Ising
energy:

{P)e(L) = (p)e(00) ~ L™WE71/Y), (3.62)

(u)e(L) — (u)e(00) ~ L™@=1/), (3.6b)

Thus in order to obtain infinite volume estimates of p.
and wu, it is necessary to perform a finite-size extrapola-
tion of (p). and (u). to L = oo. In Fig. 5 we plot the
values of (p). and (u)., corresponding to the distribu-
tions of Fig. 4, as a function of L=(¢4=1/), Although no
allowances have been made for corrections to scaling (the
effects of which are certainly much smaller than those of
field mixing), the data exhibit within the uncertainties a
rather clear linear dependence. Least squares fits to the
data yield the infinite volume estimates p} = 0.3197(4)
and uf = —0.187(2).

We round off this subsection by summarizing our re-
sults for the critical-point parameters of the LJ fluid with
re = 2.50:

TY = 1.1876(3), u’ = —2.778(2),
pr = 0.3197(4), u = —0.187(2),

s=—0.11(1), r=—1.02(1). (3.7)
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FIG. 4. (a) The density distribution at T, u: for the sys-
tem sizes m = 4-7. (b) The corresponding energy density
distributions. The lines are merely guides to the eye. Statis-
tical errors do not exceed the symbol sizes.
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A comparison of these estimates with those of previous
studies features in our concluding section.

C. The subcritical coexistence region

As described in Sec. I, conventional GCE simulation
studies of the two-phase subcritical region encounter seri-
ous problems due to the large free energy barrier separat-
ing the coexisting phases. This can lead to pronounced
metastability effects and protracted tunneling times be-
tween the phases. The multicanonical ensemble approach
[36] ameliorates these difficulties by artificially enhancing
the frequency with which a simulation samples the inter-
facial configurations of intrinsically low probability. This
enhancement is achieved by sampling not from a simple

0.3220

03215 | @ 1

0.3210 :

0.3205 1

p. ML)

0.3200 1

0.3195 b

1

0.3190 . : +
0.00 0.05 0.10 0.15 0.20 0.25
L-(d-l/v)

-0.184

-0.186 (b) .
-0.188
-0.190

-0.192

u (L)

-0.194

-0.196

-0.198

ST

0.00 0.05 0.10 0.15 0.20 0.25
L-(d-l/v)

-0.200

FIG. 5. (a) The measured average density (p).(L) at
the designated critical point, expressed as a function of
L=(4=1/) The least squares fit yields an infinite volume es-
timate p. = 0.3197(4). (b) The measured average energy
density (u).(L) at the critical point, expressed as a function
of L™(@=1/¥) The least squares fit yields an infinite volume
estimate u. = —0.187(2). In both cases we took 1/v = 1.5887
[47].

Boltzmann distribution with Hamiltonian H({r}, p), but
from a modified distribution with effective Hamiltonian
H'({r}, p) = H({r}, p) + g(p), where g(p) is a preweight-
ing function the specification of which is described below.
For the case of the density, the preweighted distribution
takes the form

1 N=L% B}
P'(p) = 7 H {/dri} e [BUrH+uL%+a(0)] - (3.8)
i=1

where Z' is the multicanonical partition function, which
is defined by Eq. (3.8).

If one now chooses the preweighting function such
that g(p) ~ Inp(p), where p(p) is the desired Boltz-
mann density distribution, one readily sees that p'(p) =~
constant Vp. To the extent that this condition is satis-
fied, the density thus performs a 1D random walk over
its entire domain, thereby allowing extremely efficient
accumulation of the preweighted histogram p’(p). Once
this histogram has been obtained, the desired Boltzmann
weighted density distribution is regained as simply

p(p) = (p)e 9.

Clearly, for this approach to succeed, one requires
a prior estimate of the function p(p) to use as the
preweighting function. But p(p) is, of course, just the
function we are trying to find. While feasible iterative
schemes exist for estimating a suitable weight function
[48], for the purposes of determining the coexistence-
curve distributions the task is considerably more straight-
forward. Knowledge of a near-critical coexistence density
distribution (easily obtainable since the free energy bar-
rier to tunneling is small near T,) can be used in con-
junction with histogram reweighting and the equal peak-
weight criterion [49] to estimate the form of pr(p) for
some other chosen point further down the coexistence
line. The extrapolated estimate of the density distribu-
tion may then be used as the weight function in a multi-
canonical simulations at this new coexistence state point,
yielding a new coexistence density distribution. The pro-
cedure is then simply repeated, histogram extrapolation
of the new distribution being used to predict the weight
function and coexistence parameters T*, u* for another
state point still deeper into the subcritical region. In
this manner one can systematically track along the coex-
istence curve in the space of u* and T*, obtaining at the
same time the spectrum of coexistence density distribu-
tions.

We have implemented this strategy for the m = 4 sys-
tem, employing the measured near-critical density dis-
tribution as our starting point. It was found that the
histogram reweighting affords reliable extrapolations over
rather a large temperature range: only seven multicanon-
ical simulations were required to reach the temperature
T* = 0.8T}. The resulting coexistence density distri-
butions (corresponding to those temperatures at which
the multicanonical simulations were actually performed)
are depicted in Fig. 6. We note that for the lowest tem-
perature studied, 7™ = 0.94, the ratio between the peak
and trough heights of pz,(p) is some 30 orders of magni-

(3.9)
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FIG. 6. (a) Estimates of the coexistence density distribu-
tions for the m = 4 system size, for a range of subcritical
temperatures, obtained as described in the text. The lines
are merely guides to the eye. Statistical errors do not exceed
the symbol sizes.

tude. Such a difference would, of course, constitute an
insurmountable barrier for a conventional grand canoni-
cal simulation.

Away from the immediate vicinity of the critical point
(where the correlation length £ < L), the peak positions
of the coexistence density distributions are expected to
correspond to the densities of the infinite volume coexist-
ing phases. This fact can be utilized in conjunction with
the previously determined critical parameters to estimate
the density-temperature phase diagram of the LJ fluid.
In Table I we list the peak positions of our measured den-
sity distributions, which are also plotted as a function of
T* in Fig. 7. For comparison, the GEMC simulation data
of Panagiotopoulos [43] are also included.

We have attempted to fit our noncritical density data
to a power law of the form

p+ — pe = a|T* — TX| £ b|T* — TP, (3.10)
with T and p} assigned the values given in Eq. (3.7), and
the order parameter exponent assigned the Ising estimate
B = 0.3258 [47]. The results of this fit are included in
Fig. 7 (solid line) and correspond to a choice of the crit-
ical amplitudes a = 0.1824(3) and b = 0.5226(4). As one
observes, the data well away from the critical point are in-

TABLE I. The peak densities corresponding to the coexis-
tence curve distributions depicted in Fig. 6.

Temperature Po pi
1.1696 0.1635(10) 0.4855(10)
1.1494 0.1375(9) 0.5155(9)
1.1111 0.1035(9) 0.5599(9)
1.0667 0.0780(9) 0.6031(9)
1.0256 0.0580(9) 0.6380(9)
0.9877 0.0445(9) 0.6665(9)
0.9412 0.0335(8) 0.6915(8)
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FIG. 7. The peak densities (filled triangles) correspond-
ing to the distributions of Fig. 6, plotted as a function of
the reduced temperature. The coexistence diameter is also
marked (filled squares). Statistical errors do not exceed the
symbol sizes. Also shown (circles) are the Gibbs ensemble es-
timates of Panagiotopolous [43] for a system of size L = 120.
The solid line represents a fit through 7., p: of the form
pt — pe = a|T* — T| + b|T* — TZ|P, with a = 0.1824(3),
b = 0.5226(4), and 8 = 0.3258 [47].

deed very well fitted by the assumed form, implying both
that the validity of the scaling form Eq. (3.10) extends
well into the subcritical region (a result also observed in
many other simple fluids [16]), and that the coexistence
diameter singularity is undetectably small on the scale
of our measurements. One further sees from Fig. 7 that
for this system size (m = 4), systematic finite-size effects

-4.0 : ;
0.90 1.00 1.10

T

.20 1.30

FIG. 8. The line of liquid-vapor phase coexistence in
the space of p* and T*, for temperatures in the range
0.95 < T* < T}. The results were obtained by implementing
the equal peak-weight criterion for the density distribution
[49] in conjunction with the multicanonical simulations and
histogram reweighting. Also shown are the measured direc-
tions of the relevant scaling fields. Statistical errors do not
exceed the symbol sizes.
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become apparent for T* 2 0.95T,. Any power law fit to
the density data that attempted to extrapolate to criti-
cality by including data points closer to criticality than
this would thus run the risk of seriously overestimating
the critical temperature [17,18,25].

Finally, in this section we plot the coexistence curve in
the space of u* and T as obtained from the multicanoni-
cal simulations. Figure 8 shows this curve, together with
the estimated critical point and the measured directions
of the relevant scaling fields.

IV. CONCLUSIONS

In summary, we have employed recently developed
mixed-field FSS techniques and histogram extrapola-
tion methods to obtain highly precise estimates for the
critical-point parameters of the truncated and unshifted
LJ fluid with . = 2.50. Our measurements enable us
to pinpoint the critical temperature to within an uncer-
tainty of 0.03%, considerably better than the accuracy of
1% (or more) typically quoted for other commonly used
simulation techniques.

Two recent studies have also reported values for the
critical parameters of the LJ fluid with r. = 2.5¢. That
of Finn and Monson [8] corrected the equation of state
data of Nicolas et al. [6] for the discontinuity at 7. and
the absence of a long tail. Their resulting estimate of the
critical temperature is T} = 1.23, which is clearly too
high with respect to our own estimate [Eq. (3.7)]. Their
value for the critical density p}; = 0.32 does, on the other
hand, agree well with our result, although since no error
bars were quoted it is impossible to tell to what extent
the accord is meaningful.

By comparison, the GEMC simulation estimates of
Panagiotopoulos [43], T = 1.176(8) and ps = 0.33(1),
correspond rather more closely to our results. In this
GEMC study, a power law fit was made to subcritical
coexistence density data, ignoring data points close to
the critical point which are most influenced by finite-size
effects. Although this approach certainly seems to re-
duce the systematic overestimate of 7* that can occur in
GEMC simulations when fitting all the available density
data, it is not clear how many near-critical data points
should be discarded when the location of the critical
point and the extent of finite-size effects are not known
beforehand. Perhaps as a consequence of this (as well as
the neglect of corrections to scaling), the error bar on the
value of T quoted in [43] does not overlap with ours.

Turning now to the general computational issues raised
by the present study, we have seen the great utility of FSS
methods for probing the critical-point region of fluids.
The power of FSS techniques was also previously demon-
strated in a related GCE study of the 2D LJ fluid [17].
One significant drawback of this previous investigation,
however, was its high computational cost. Histogram
reweighting was not employed and consequently several
long simulations were required for each L, in order to ac-
curately locate the near-critical coexistence curve and the
critical point. This in turn entailed the use of long runs
on high performance parallel computers. By contrast,
use of histogram reweighting in the present work allowed
the study of systems containing up to five times as many
particles as those of the 2D study, while exercising the
capabilities of only a pair of middle-range workstations.
We thus believe that the combined use of FSS methods
and histogram reweighting techniques, as espoused here,
brings high precision studies of fluid critical phenomena
within the reach of almost every pocket.

The benefits offered by the use of multicanonical
preweighting for simulations of the subcritical two-phase
coexistence region are similarly impressive. In the pre-
vious GCE study of the 2D LJ fluid [17], phase coexis-
tence could not be studied below about 0.98T,, due to the
large free energy barrier separating the coexisting phases.
However, by incorporating multicanonical preweighting
into GCE simulations, we have seen that it is possible to
probe much smaller subcritical temperatures with ease
[50].

Finally we remark that the techniques deployed here
are not restricted to simple fluids, but can be combined
with configurational bias Monte Carlo methods [51,52]
to facilitate accurate investigations of phase coexistence
and critical phenomena in polymer systems. It should
be feasible to apply the present method to systems with
long ranged interactions, e.g., Coulombic fluids, although
the computational work load would naturally increase
rapidly with the range of the potential. We hope to re-
port on such extensions in future work.
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